If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(p^2)-(3p)=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| 5+0.75x=32 | | 9w+3=4w-9. | | X^2+10x+50=7250 | | W=0.04s+250 | | 12+7q=-6 | | x+2x-1+90=180 | | 3x-2(3x+4)=7 | | 3x-5=2x=1 | | 6(n+6)=6+36 | | 4(g-1)=24. | | 12=7+y | | x=6.5-11.9 | | =543v | | X+5(x+5)=100 | | x-2(-0.75x)=10 | | -3(1x+5)=3(1x+-1) | | 3(x+)-5=3x-2 | | 3x2+12-6=0 | | X^2-35x+45=10245 | | 7(y-6)=-6y+49 | | 7(y-6)=-6+49 | | 9(2x+1)-4x=23 | | 1.2(4x-5)=8.4 | | X^2-35x+45=10.245 | | 4(x+10)=50+2 | | 18+-4k=-10+-4k | | Y-5=-1(5-y | | 11x+56=3x | | 1.25=x | | $2+$3.50g=$5+3.25g | | 4z+6=2z+38 | | 3(n+6)=6n+36 |